Global - Land
bcc-csm1-1
Download Data
Period Mean (original grids) [1]
Model Period Mean (intersection) [1]
Benchmark Period Mean (intersection) [1]
Model Period Mean (complement) [1]
Benchmark Period Mean (complement) [1]
Bias [1]
Phase Shift [months]
Bias Score [1]
Seasonal Cycle Score [1]
Spatial Distribution Score [1]
Overall Score [1]
Benchmark [-] 0.520
bcc-csm1-1 [-] 0.502 0.519 0.520 0.458 0.414 -8.58e-05 2.09 0.389 0.669 0.906 0.655
BCC-CSM2-MR [-] 0.536 0.546 0.520 0.506 0.422 0.0262 2.07 0.430 0.677 0.909 0.672
CanESM2 [-] 0.482 0.493 0.520 0.448 0.427 -0.0269 1.73 0.426 0.733 0.903 0.687
CanESM5 [-] 0.569 0.588 0.520 0.508 0.431 0.0684 1.77 0.380 0.731 0.910 0.674
CESM1-BGC [-] 0.571 0.586 0.520 0.526 0.453 0.0671 1.71 0.465 0.737 0.927 0.710
CESM2 [-] 0.525 0.531 0.520 0.507 0.449 0.0117 1.61 0.491 0.761 0.948 0.733
GFDL-ESM2G [-] 0.588 0.608 0.520 0.534 0.423 0.0882 1.94 0.354 0.696 0.901 0.650
GFDL-ESM4 [-] 0.615 0.642 0.520 0.531 0.402 0.122 2.09 0.329 0.666 0.845 0.614
IPSL-CM5A-LR [-] 0.475 0.487 0.520 0.459 0.413 -0.0325 2.40 0.415 0.602 0.886 0.634
IPSL-CM6A-LR [-] 0.563 0.581 0.520 0.508 0.428 0.0614 1.65 0.485 0.752 0.968 0.735
MeanCMIP5 [-] 0.557 0.568 0.520 0.521 0.504 0.0476 1.77 0.471 0.722 0.981 0.725
MeanCMIP6 [-] 0.571 0.587 0.520 0.520 0.424 0.0664 1.71 0.463 0.735 0.954 0.717
MIROC-ESM [-] 0.551 0.562 0.520 0.519 0.388 0.0423 1.90 0.419 0.699 0.942 0.686
MIROC-ESM2L [-] 0.644 0.667 0.520 0.592 0.734 0.147 2.12 0.280 0.666 0.852 0.599
MPI-ESM-LR [-] 0.552 0.580 0.520 0.471 0.422 0.0601 1.81 0.335 0.724 0.767 0.609
MPI-ESM1.2-HR [-] 0.514 0.534 0.520 0.449 0.423 0.0155 1.78 0.350 0.713 0.715 0.593
NorESM1-ME [-] 0.571 0.588 0.520 0.516 0.433 0.0682 1.70 0.439 0.742 0.904 0.695
NorESM2-LM [-] 0.523 0.534 0.520 0.493 0.433 0.0137 1.60 0.464 0.763 0.934 0.720
UK-HadGEM2-ES [-] 0.572 0.586 0.520 0.539 0.424 0.0661 1.64 0.381 0.743 0.860 0.661
UKESM1-0-LL [-] 0.565 0.578 0.520 0.527 0.424 0.0580 1.50 0.392 0.777 0.863 0.677

Temporally integrated period mean click to collapse contents

BENCHMARK MEAN
Data not available
Data not available
MODEL MEAN
Data not available
Data not available
BIAS
Data not available
Data not available
BIAS SCORE
Data not available
Data not available
BENCHMARK MAX MONTH
Data not available
Data not available
MODEL MAX MONTH
Data not available
Data not available
DIFFERENCE IN MAX MONTH
Data not available
Data not available
SEASONAL CYCLE SCORE
Data not available
Data not available

SPATIAL TAYLOR DIAGRAM
Data not available
MODEL COLORS
Data not available

Spatially integrated regional mean click to collapse contents

MODEL COLORS
Data not available
REGIONAL MEAN
Data not available
ANNUAL CYCLE
Data not available
MONTHLY ANOMALY
Data not available
ANNUAL CYCLE
Data not available

EvaporativeFraction / FLUXCOM / 1980-2015 / global / MNAME

Benchmark
Data not available
Data not available
bcc-csm1-1
Data not available
Data not available
BCC-CSM2-MR
Data not available
Data not available
CanESM2
Data not available
Data not available
CanESM5
Data not available
Data not available
CESM1-BGC
Data not available
Data not available
CESM2
Data not available
Data not available
GFDL-ESM2G
Data not available
Data not available
GFDL-ESM4
Data not available
Data not available
IPSL-CM5A-LR
Data not available
Data not available
IPSL-CM6A-LR
Data not available
Data not available
MeanCMIP5
Data not available
Data not available
MeanCMIP6
Data not available
Data not available
MIROC-ESM
Data not available
Data not available
MIROC-ESM2L
Data not available
Data not available
MPI-ESM-LR
Data not available
Data not available
MPI-ESM1.2-HR
Data not available
Data not available
NorESM1-ME
Data not available
Data not available
NorESM2-LM
Data not available
Data not available
UK-HadGEM2-ES
Data not available
Data not available
UKESM1-0-LL
Data not available
Data not available

Data Information

  Title:
FLUXCOM (RS+METEO) Global Land Energy Fluxes using GSWP3 climate data

  Version:
1

  Institutions:
Department Biogeochemical Integration, Max Planck Institute for Biogeochemistry, Germany

  Source:
Data generated by machine learning to merge energy flux measurements from FLUXNET eddy covariance towers with MODIS remote sensing and GSWP3v1 meteorological data (RS+METEO)

  History:
2019-05-07: downloaded source from doi:10.17871/FLUXCOM_EnergyFluxes_v1
2019-06-28: converted to netCDF with https://github.com/mmu2019/Datasets/blob/master/read-sh-fluxcom.py

  References:
Jung, M., S. Koirala, U. Weber, K. Ichii, F. Gans, G. Camps-Valls, D. Papale, C. Schwalm, G. Tramontana, M. Reichstein (2019), The FLUXCOM ensemble of global land-atmosphere energy fluxes, Scientific Data, submitted, 1-12, https://arxiv.org/abs/1812.04951

Tramontana, G., M. Jung, C.R. Schwalm, K. Ichii, G. Camps-Valls, B. Raduly, M. Reichstein, M.A. Arain, A. Cescatti, G. Kiely, L. Merbold, P. Serrano-Ortiz, S. Sickert, S. Wolf, and D. Papale (2016), Predicting carbon dioxide and energy fluxes across global FLUXNET sites with regression algorithms, Biogeosciences, 13, 4291-4313, doi:10.5194/bg-13-4291-2016

  Comments:
time_period: 1980-01 through 2014-12
original_temporal_resolution: monthly
original_spatial_resolution: 0.5 degree
original_units: MJ/m2/day
final_temporal_resolution: monthly
final_spatial_resolution: 0.5 degree
final_units: watt/m2

  Convention:
CF-1.7

loading