Global - Land
bcc-csm1-1
Download Data
Period Mean (original grids) [watt/m2]
Model Period Mean (intersection) [watt/m2]
Benchmark Period Mean (intersection) [watt/m2]
Model Period Mean (complement) [watt/m2]
Benchmark Period Mean (complement) [watt/m2]
Bias [watt/m2]
RMSE [watt/m2]
Phase Shift [months]
Bias Score [1]
RMSE Score [1]
Seasonal Cycle Score [1]
Spatial Distribution Score [1]
Overall Score [1]
Benchmark [-] 40.7
bcc-csm1-1 [-] 35.1 40.0 40.7 20.8 -1.99 23.4 1.25 0.326 0.345 0.838 0.779 0.526
BCC-CSM2-MR [-] 34.0 39.2 40.7 16.8 -2.32 22.3 1.27 0.324 0.374 0.838 0.724 0.527
CanESM2 [-] 36.5 41.8 40.7 20.5 -0.257 21.1 1.28 0.389 0.442 0.833 0.821 0.586
CanESM5 [-] 27.9 32.6 40.7 13.4 -8.79 21.3 1.35 0.307 0.459 0.821 0.900 0.589
CESM1-BGC [-] 26.7 32.2 40.7 8.87 -9.07 18.9 1.05 0.380 0.500 0.874 0.914 0.634
CESM2 [-] 33.5 39.5 40.7 13.8 -1.85 17.1 1.16 0.445 0.484 0.859 0.878 0.630
GFDL-ESM2G [-] 25.6 30.4 40.7 10.5 -11.1 23.4 1.08 0.271 0.388 0.871 0.889 0.561
GFDL-ESM4 [-] 23.2 27.7 40.7 12.7 -13.0 21.8 1.18 0.255 0.444 0.863 0.876 0.576
IPSL-CM5A-LR [-] 36.8 44.0 40.7 15.6 2.38 24.6 1.36 0.260 0.432 0.822 0.635 0.516
IPSL-CM6A-LR [-] 29.7 35.5 40.7 11.3 -5.96 16.7 1.08 0.449 0.524 0.870 0.935 0.660
MeanCMIP5 [-] 29.8 35.8 40.8 16.0 41.7 -4.97 16.6 0.950 0.407 0.561 0.893 0.887 0.662
MeanCMIP6 [-] 29.7 34.7 40.7 14.0 -6.52 16.2 0.994 0.429 0.544 0.885 0.911 0.662
MIROC-ESM [-] 35.4 40.9 40.7 17.8 -1.76 24.5 1.39 0.304 0.371 0.814 0.758 0.524
MIROC-ESM2L [-] 22.5 25.4 40.7 14.5 -15.9 25.3 1.24 0.212 0.453 0.837 0.822 0.555
MPI-ESM-LR [-] 35.4 35.9 40.7 18.3 -6.06 25.9 1.45 0.232 0.350 0.806 0.695 0.486
MPI-ESM1.2-HR [-] 35.7 41.1 40.7 16.2 -0.466 24.1 1.26 0.268 0.392 0.835 0.681 0.514
NorESM1-ME [-] 27.0 31.6 40.7 12.7 -9.74 20.5 1.17 0.343 0.477 0.856 0.895 0.610
NorESM2-LM [-] 34.1 39.6 40.7 16.8 -2.31 17.9 1.33 0.437 0.450 0.829 0.890 0.611
UK-HadGEM2-ES [-] 30.4 35.1 40.8 15.3 -6.65 18.5 1.07 0.354 0.516 0.867 0.888 0.628
UKESM1-0-LL [-] 28.9 33.4 40.7 14.5 -8.19 18.4 1.21 0.366 0.492 0.852 0.929 0.626

Temporally integrated period mean click to collapse contents

BENCHMARK MEAN
Data not available
Data not available
MODEL MEAN
Data not available
Data not available
BIAS
Data not available
Data not available
BIAS SCORE
Data not available
Data not available
RMSE
Data not available
Data not available
RMSE SCORE
Data not available
Data not available
BENCHMARK MAX MONTH
Data not available
Data not available
MODEL MAX MONTH
Data not available
Data not available
DIFFERENCE IN MAX MONTH
Data not available
Data not available
SEASONAL CYCLE SCORE
Data not available
Data not available

SPATIAL TAYLOR DIAGRAM
Data not available
MODEL COLORS
Data not available

Spatially integrated regional mean click to collapse contents

MODEL COLORS
Data not available
REGIONAL MEAN
Data not available
ANNUAL CYCLE
Data not available
MONTHLY ANOMALY
Data not available
ANNUAL CYCLE
Data not available

SensibleHeat / FLUXCOM / 1980-2015 / global / MNAME

Benchmark
Data not available
Data not available
bcc-csm1-1
Data not available
Data not available
BCC-CSM2-MR
Data not available
Data not available
CanESM2
Data not available
Data not available
CanESM5
Data not available
Data not available
CESM1-BGC
Data not available
Data not available
CESM2
Data not available
Data not available
GFDL-ESM2G
Data not available
Data not available
GFDL-ESM4
Data not available
Data not available
IPSL-CM5A-LR
Data not available
Data not available
IPSL-CM6A-LR
Data not available
Data not available
MeanCMIP5
Data not available
Data not available
MeanCMIP6
Data not available
Data not available
MIROC-ESM
Data not available
Data not available
MIROC-ESM2L
Data not available
Data not available
MPI-ESM-LR
Data not available
Data not available
MPI-ESM1.2-HR
Data not available
Data not available
NorESM1-ME
Data not available
Data not available
NorESM2-LM
Data not available
Data not available
UK-HadGEM2-ES
Data not available
Data not available
UKESM1-0-LL
Data not available
Data not available

Data Information

  Title:
FLUXCOM (RS+METEO) Global Land Energy Fluxes using GSWP3 climate data

  Version:
1

  Institutions:
Department Biogeochemical Integration, Max Planck Institute for Biogeochemistry, Germany

  Source:
Data generated by machine learning to merge energy flux measurements from FLUXNET eddy covariance towers with MODIS remote sensing and GSWP3v1 meteorological data (RS+METEO)

  History:
2019-05-07: downloaded source from doi:10.17871/FLUXCOM_EnergyFluxes_v1
2019-06-28: converted to netCDF with https://github.com/mmu2019/Datasets/blob/master/read-sh-fluxcom.py

  References:
Jung, M., S. Koirala, U. Weber, K. Ichii, F. Gans, G. Camps-Valls, D. Papale, C. Schwalm, G. Tramontana, M. Reichstein (2019), The FLUXCOM ensemble of global land-atmosphere energy fluxes, Scientific Data, submitted, 1-12, https://arxiv.org/abs/1812.04951

Tramontana, G., M. Jung, C.R. Schwalm, K. Ichii, G. Camps-Valls, B. Raduly, M. Reichstein, M.A. Arain, A. Cescatti, G. Kiely, L. Merbold, P. Serrano-Ortiz, S. Sickert, S. Wolf, and D. Papale (2016), Predicting carbon dioxide and energy fluxes across global FLUXNET sites with regression algorithms, Biogeosciences, 13, 4291-4313, doi:10.5194/bg-13-4291-2016

  Comments:
time_period: 1980-01 through 2014-12
original_temporal_resolution: monthly
original_spatial_resolution: 0.5 degree
original_units: MJ/m2/day
final_temporal_resolution: monthly
final_spatial_resolution: 0.5 degree
final_units: watt/m2

  Convention:
CF-1.7

loading