Mean State

Download Data
Period Mean (original grids) [W m-2]
Bias [W m-2]
RMSE [W m-2]
Phase Shift [months]
Bias Score [1]
RMSE Score [1]
Seasonal Cycle Score [1]
Overall Score [1]
Benchmark [-] 264.
ACCESS-ESM1-5 [-] 276. 12.2 24.7 0.128 0.775 0.675 0.986 0.778
BCC-CSM2-MR [-] 265. 0.789 21.6 0.172 0.868 0.664 0.988 0.796
CanESM5 [-] 263. -0.958 21.8 0.0431 0.884 0.656 0.997 0.798
CESM2 [-] 274. 10.2 22.6 0.128 0.797 0.684 0.986 0.788
GFDL-ESM4 [-] 271. 7.31 22.6 0.172 0.811 0.683 0.988 0.791
IPSL-CM6A-LR [-] 266. 2.36 22.3 0.0861 0.859 0.656 0.994 0.791
MeanCMIP6 [-] 271. 7.02 17.7 0.0861 0.837 0.743 0.994 0.829
MIROC-ESM2L [-] 279. 14.8 27.5 0.129 0.711 0.667 0.991 0.759
MPI-ESM1.2-HR [-] 272. 8.02 20.9 0.129 0.816 0.695 0.991 0.799
NorESM2-LM [-] 275. 10.9 23.3 0.0861 0.782 0.684 0.994 0.786
UKESM1-0-LL [-] 263. -1.09 22.8 0.0861 0.877 0.641 0.994 0.789
Download Data
Period Mean (original grids) [W m-2]
Bias [W m-2]
RMSE [W m-2]
Phase Shift [months]
Bias Score [1]
RMSE Score [1]
Seasonal Cycle Score [1]
Overall Score [1]
Benchmark [-] 312.
ACCESS-ESM1-5 [-] 320. 7.91 23.2 0.531 0.690 0.593 0.949 0.707
BCC-CSM2-MR [-] 310. -2.09 21.5 0.416 0.738 0.584 0.957 0.716
CanESM5 [-] 310. -2.75 21.6 0.492 0.720 0.579 0.959 0.709
CESM2 [-] 318. 5.91 21.5 0.527 0.715 0.597 0.949 0.714
GFDL-ESM4 [-] 313. 0.764 20.7 0.546 0.741 0.596 0.943 0.719
IPSL-CM6A-LR [-] 314. 2.05 21.5 0.670 0.724 0.593 0.949 0.715
MeanCMIP6 [-] 314. 1.36 17.0 0.467 0.743 0.683 0.956 0.766
MIROC-ESM2L [-] 318. 5.59 23.3 0.416 0.694 0.588 0.962 0.708
MPI-ESM1.2-HR [-] 313. 0.930 20.2 0.521 0.739 0.604 0.944 0.723
NorESM2-LM [-] 319. 6.62 21.9 0.508 0.700 0.594 0.955 0.711
UKESM1-0-LL [-] 309. -3.65 21.6 0.536 0.726 0.593 0.946 0.714
Download Data
Period Mean (original grids) [W m-2]
Bias [W m-2]
RMSE [W m-2]
Phase Shift [months]
Bias Score [1]
RMSE Score [1]
Seasonal Cycle Score [1]
Overall Score [1]
Benchmark [-] 348.
ACCESS-ESM1-5 [-] 345. -3.59 20.4 0.894 0.715 0.556 0.929 0.689
BCC-CSM2-MR [-] 343. -5.34 20.5 0.567 0.722 0.567 0.949 0.701
CanESM5 [-] 339. -9.90 22.4 0.563 0.663 0.529 0.963 0.671
CESM2 [-] 350. 1.72 20.3 0.676 0.744 0.559 0.955 0.704
GFDL-ESM4 [-] 346. -2.02 19.4 0.448 0.759 0.557 0.971 0.711
IPSL-CM6A-LR [-] 344. -4.34 19.7 0.787 0.797 0.536 0.948 0.704
MeanCMIP6 [-] 344. -4.72 14.7 0.678 0.787 0.660 0.955 0.766
MIROC-ESM2L [-] 352. 3.71 20.5 0.339 0.753 0.552 0.978 0.709
MPI-ESM1.2-HR [-] 345. -3.11 20.3 0.569 0.717 0.559 0.962 0.699
NorESM2-LM [-] 352. 3.47 20.8 0.678 0.806 0.527 0.955 0.704
UKESM1-0-LL [-] 338. -9.98 20.7 0.667 0.667 0.570 0.944 0.688
Download Data
Period Mean (original grids) [W m-2]
Bias [W m-2]
RMSE [W m-2]
Phase Shift [months]
Bias Score [1]
RMSE Score [1]
Seasonal Cycle Score [1]
Overall Score [1]
Benchmark [-] 319.
ACCESS-ESM1-5 [-] 314. -5.18 18.4 0.886 0.785 0.658 0.940 0.760
BCC-CSM2-MR [-] 314. -5.60 17.6 0.738 0.774 0.656 0.950 0.759
CanESM5 [-] 305. -14.0 20.9 0.886 0.668 0.614 0.940 0.709
CESM2 [-] 323. 3.50 18.3 1.03 0.882 0.645 0.931 0.776
GFDL-ESM4 [-] 310. -9.30 18.2 0.886 0.771 0.664 0.940 0.760
IPSL-CM6A-LR [-] 310. -8.92 21.0 0.886 0.792 0.613 0.940 0.739
MeanCMIP6 [-] 312. -6.81 14.5 0.886 0.759 0.734 0.940 0.792
MIROC-ESM2L [-] 315. -4.10 17.1 0.738 0.800 0.659 0.950 0.767
MPI-ESM1.2-HR [-] 318. -1.50 16.5 0.886 0.824 0.656 0.940 0.769
NorESM2-LM [-] 329. 10.2 24.9 0.886 0.763 0.606 0.940 0.729
UKESM1-0-LL [-] 310. -8.98 18.4 0.886 0.722 0.657 0.940 0.744
Download Data
Period Mean (original grids) [W m-2]
Bias [W m-2]
RMSE [W m-2]
Phase Shift [months]
Bias Score [1]
RMSE Score [1]
Seasonal Cycle Score [1]
Overall Score [1]
Benchmark [-] 305.
ACCESS-ESM1-5 [-] 315. 9.76 24.9 0.448 0.660 0.607 0.965 0.710
BCC-CSM2-MR [-] 303. -2.77 23.1 0.189 0.765 0.576 0.987 0.726
CanESM5 [-] 306. 0.718 21.9 0.320 0.756 0.602 0.978 0.734
CESM2 [-] 310. 4.53 22.0 0.420 0.724 0.607 0.967 0.726
GFDL-ESM4 [-] 307. 1.71 22.0 0.247 0.743 0.605 0.983 0.734
IPSL-CM6A-LR [-] 310. 4.15 22.5 0.757 0.708 0.608 0.949 0.718
MeanCMIP6 [-] 307. 2.03 17.7 0.218 0.747 0.696 0.985 0.781
MIROC-ESM2L [-] 312. 6.63 24.5 0.247 0.708 0.594 0.983 0.720
MPI-ESM1.2-HR [-] 306. 0.624 20.9 0.160 0.755 0.616 0.989 0.744
NorESM2-LM [-] 311. 5.68 21.5 0.335 0.710 0.616 0.977 0.730
UKESM1-0-LL [-] 302. -3.54 22.7 0.277 0.754 0.591 0.981 0.729
Download Data
Period Mean (original grids) [W m-2]
Bias [W m-2]
RMSE [W m-2]
Phase Shift [months]
Bias Score [1]
RMSE Score [1]
Seasonal Cycle Score [1]
Overall Score [1]
Benchmark [-] 409.
ACCESS-ESM1-5 [-] 418. 9.70 12.2 2.05 0.247 0.366 0.745 0.431
BCC-CSM2-MR [-] 419. 10.1 13.4 1.03 0.234 0.354 0.930 0.468
CanESM5 [-] 418. 9.84 14.2 1.02 0.242 0.217 0.933 0.402
CESM2 [-] 424. 15.0 18.1 2.05 0.115 0.327 0.745 0.379
GFDL-ESM4 [-] 412. 3.51 9.55 2.05 0.603 0.310 0.745 0.492
IPSL-CM6A-LR [-] 409. 0.681 5.07 1.02 0.906 0.492 0.933 0.706
MeanCMIP6 [-] 417. 8.23 10.2 2.05 0.305 0.499 0.745 0.512
MIROC-ESM2L [-] 413. 4.83 6.55 1.02 0.499 0.435 0.933 0.575
MPI-ESM1.2-HR [-] 411. 2.65 6.67 3.05 0.682 0.437 0.498 0.513
NorESM2-LM [-] 421. 12.6 15.6 2.05 0.163 0.443 0.745 0.449
UKESM1-0-LL [-] 418. 9.28 12.0 1.03 0.262 0.465 0.930 0.531
Download Data
Period Mean (original grids) [W m-2]
Bias [W m-2]
RMSE [W m-2]
Phase Shift [months]
Bias Score [1]
RMSE Score [1]
Seasonal Cycle Score [1]
Overall Score [1]
Benchmark [-] 392.
ACCESS-ESM1-5 [-] 398. 5.17 18.8 1.59 0.687 0.482 0.787 0.610
BCC-CSM2-MR [-] 395. 2.69 17.2 1.58 0.655 0.510 0.753 0.607
CanESM5 [-] 394. 1.22 19.0 1.35 0.651 0.443 0.829 0.592
CESM2 [-] 403. 10.3 20.0 1.45 0.602 0.493 0.785 0.593
GFDL-ESM4 [-] 392. -0.541 15.7 2.07 0.730 0.504 0.679 0.604
IPSL-CM6A-LR [-] 395. 2.44 18.4 1.06 0.681 0.484 0.868 0.629
MeanCMIP6 [-] 395. 2.60 12.9 1.39 0.743 0.600 0.794 0.685
MIROC-ESM2L [-] 397. 5.02 17.8 1.69 0.675 0.498 0.790 0.615
MPI-ESM1.2-HR [-] 390. -2.49 17.4 2.02 0.688 0.476 0.690 0.582
NorESM2-LM [-] 403. 10.7 19.6 1.35 0.615 0.485 0.811 0.599
UKESM1-0-LL [-] 388. -3.95 16.2 1.87 0.690 0.523 0.706 0.610
Download Data
Period Mean (original grids) [W m-2]
Bias [W m-2]
RMSE [W m-2]
Phase Shift [months]
Bias Score [1]
RMSE Score [1]
Seasonal Cycle Score [1]
Overall Score [1]
Benchmark [-] 240.
ACCESS-ESM1-5 [-] 240. -0.488 24.7 0.00 0.781 0.617 1.00 0.754
BCC-CSM2-MR [-] 232. -8.31 28.0 0.129 0.737 0.602 0.991 0.733
CanESM5 [-] 233. -7.51 26.8 0.258 0.775 0.591 0.983 0.735
CESM2 [-] 249. 8.62 26.8 0.129 0.735 0.620 0.991 0.742
GFDL-ESM4 [-] 240. 0.380 24.3 0.00 0.766 0.635 1.00 0.759
IPSL-CM6A-LR [-] 244. 3.47 27.5 0.258 0.761 0.599 0.983 0.735
MeanCMIP6 [-] 240. -0.0372 21.3 0.00 0.778 0.682 1.00 0.786
MIROC-ESM2L [-] 239. -1.05 29.5 0.129 0.740 0.590 0.991 0.728
MPI-ESM1.2-HR [-] 239. -0.910 27.0 0.00 0.753 0.603 1.00 0.740
NorESM2-LM [-] 248. 8.40 25.3 0.129 0.740 0.617 0.991 0.741
UKESM1-0-LL [-] 230. -10.5 27.9 0.00 0.723 0.610 1.00 0.736
Download Data
Period Mean (original grids) [W m-2]
Bias [W m-2]
RMSE [W m-2]
Phase Shift [months]
Bias Score [1]
RMSE Score [1]
Seasonal Cycle Score [1]
Overall Score [1]
Benchmark [-] 311.
ACCESS-ESM1-5 [-] 320. 9.21 23.1 0.344 0.683 0.587 0.977 0.708
BCC-CSM2-MR [-] 308. -3.11 21.3 0.343 0.694 0.584 0.977 0.710
CanESM5 [-] 305. -6.31 21.8 0.540 0.661 0.581 0.964 0.697
CESM2 [-] 316. 4.75 20.9 0.409 0.703 0.591 0.973 0.714
GFDL-ESM4 [-] 310. -0.676 20.5 0.507 0.711 0.587 0.966 0.713
IPSL-CM6A-LR [-] 313. 1.52 21.2 0.654 0.679 0.597 0.956 0.707
MeanCMIP6 [-] 311. -0.142 17.6 0.507 0.706 0.676 0.966 0.756
MIROC-ESM2L [-] 314. 3.21 23.1 0.294 0.661 0.582 0.980 0.701
MPI-ESM1.2-HR [-] 312. 0.459 20.3 0.507 0.698 0.602 0.966 0.717
NorESM2-LM [-] 316. 4.52 22.3 0.508 0.673 0.581 0.966 0.700
UKESM1-0-LL [-] 308. -2.76 21.5 0.541 0.672 0.595 0.964 0.707

Temporally integrated period mean

BENCHMARK MEAN
Data not available
Data not available
MODEL MEAN
Data not available
Data not available
BIAS
Data not available
Data not available
BIAS SCORE
Data not available
Data not available
RMSE
Data not available
Data not available
RMSE SCORE
Data not available
Data not available
BENCHMARK MAX MONTH
Data not available
Data not available
MODEL MAX MONTH
Data not available
Data not available
DIFFERENCE IN MAX MONTH
Data not available
Data not available
SEASONAL CYCLE SCORE
Data not available
Data not available

Spatially integrated regional mean

MODEL COLORS
Data not available
REGIONAL MEAN
Data not available
ANNUAL CYCLE
Data not available
MONTHLY ANOMALY
Data not available
ANNUAL CYCLE
Data not available

All Models

Benchmark
Data not available
Data not available
ACCESS-ESM1-5
Data not available
Data not available
BCC-CSM2-MR
Data not available
Data not available
CanESM5
Data not available
Data not available
CESM2
Data not available
Data not available
GFDL-ESM4
Data not available
Data not available
IPSL-CM6A-LR
Data not available
Data not available
MeanCMIP6
Data not available
Data not available
MIROC-ESM2L
Data not available
Data not available
MPI-ESM1.2-HR
Data not available
Data not available
NorESM2-LM
Data not available
Data not available
UKESM1-0-LL
Data not available
Data not available

Data Information

  Title:
FluxNet Tower eddy covariance measurements (Tier 1)

  Version:
2015

  Institutions:
FluxNet, AmeriFlux, AfriFlux, AsiaFlux, ChinaFlux, Fluxnet-Canada, KoFlux, CarboAfrica, CarboEuropeIP, CarboItaly, CarboMont, GreenGrass, OzFlux-TERN, LBA, NECC, ICOS, TCOS-Siberia, and USCCC

  References:
Reichstein, M., D. Papale, R. Valentini, M. Aubinet, C. Bernhofer, A. Knohl, T. Laurila, A. Lindroth, E. Moors, K. Pilegaard, and G. Seufert (2007), Determinants of terrestrialecosystem carbon balance inferred from European eddy covarianceflux sites, Geophys. Res. Lett., 34, L01402, doi:10.1029/2006GL027880

Lasslop, G., M. Reichstein, D. Papale, A.D. Richardson, A. Arneth, A. Barr, P. Stoy, and G. Wohlfahrt (2010), Separation of net ecosystem exchange into assimilation and respiration using a light response curve approach: critical issues and global evaluation, Global Change Biology, 16, 187-208, doi:10.1111/j.1365-2486.2009.02041.x

Knauer, J., S. Zaehle, B.E. Medlyn, M. Reichstein, C.A. Williams, M. Migliavacca, M.G. De Kauwe, C. Werner, C. Keitel, P. Kolari, J.-M. Limousin, and M.-L. Linderson (2018), Towards physiologically meaningful water use efficiency estimates from eddy covariance data, Global Change Biology, 24(2), 694-710, doi:10.1111/gcb.13893

  Comment:
Fluxnet variable(s) used: LW_IN_F