Global - Land
CLM-CRUJRA
Download Data
Period Mean (original grids) [watt/m2]
Model Period Mean (intersection) [watt/m2]
Benchmark Period Mean (intersection) [watt/m2]
Model Period Mean (complement) [watt/m2]
Benchmark Period Mean (complement) [watt/m2]
Bias [watt/m2]
RMSE [watt/m2]
Phase Shift [months]
Bias Score [1]
RMSE Score [1]
Seasonal Cycle Score [1]
Spatial Distribution Score [1]
Overall Score [1]
Benchmark [-] 48.9
CLM-CRUJRA [-] 42.9 44.0 48.9 26.7 67.6 -4.83 16.4 0.988 0.653 0.514 0.811 0.988 0.696
CLM-GSWP3 [-] 41.2 42.3 48.9 24.4 67.6 -6.57 16.8 0.892 0.632 0.517 0.852 0.987 0.701
CLM-Princeton [-] 38.7 39.5 48.9 24.6 67.6 -9.34 19.3 0.961 0.569 0.494 0.832 0.968 0.672
ISBA-CTRIP-CRUJRA [-] 46.6 50.1 48.9 33.6 74.9 1.27 17.9 0.922 0.645 0.487 0.843 0.955 0.684
ISBA-CTRIP-GSWP3 [-] 43.9 47.6 48.9 30.4 74.9 -1.28 18.9 0.961 0.652 0.454 0.845 0.967 0.674
ISBA-CTRIP-Princeton [-] 39.7 42.3 48.9 30.1 74.9 -6.62 19.4 1.05 0.613 0.455 0.815 0.986 0.665
JSBACH-CRUJRA [-] 52.9 56.8 47.9 22.2 64.6 8.76 25.8 0.985 0.501 0.418 0.841 0.867 0.609
JSBACH-GSWP3 [-] 50.8 54.4 47.9 19.1 64.6 6.40 24.3 1.01 0.545 0.394 0.829 0.881 0.609
JSBACH-Princeton [-] 50.1 53.8 47.9 20.4 64.6 5.77 24.2 1.05 0.541 0.412 0.820 0.896 0.616
Mean-CRUJRA [-] 47.0 50.4 48.9 35.3 52.4 1.52 16.0 0.876 0.654 0.531 0.844 0.966 0.706
Mean-GSWP3 [-] 44.6 48.2 48.9 32.4 52.4 -0.684 16.0 0.826 0.685 0.508 0.866 0.975 0.708
Mean-Princeton [-] 42.3 45.3 48.9 32.3 52.4 -3.64 16.3 0.875 0.662 0.508 0.851 0.989 0.704

Temporally integrated period mean click to collapse contents

BENCHMARK MEAN
Data not available
Data not available
MODEL MEAN
Data not available
Data not available
BIAS
Data not available
Data not available
BIAS SCORE
Data not available
Data not available
RMSE
Data not available
Data not available
RMSE SCORE
Data not available
Data not available
BENCHMARK MAX MONTH
Data not available
Data not available
MODEL MAX MONTH
Data not available
Data not available
DIFFERENCE IN MAX MONTH
Data not available
Data not available
SEASONAL CYCLE SCORE
Data not available
Data not available

SPATIAL TAYLOR DIAGRAM
Data not available
MODEL COLORS
Data not available

Spatially integrated regional mean click to collapse contents

MODEL COLORS
Data not available
REGIONAL MEAN
Data not available
ANNUAL CYCLE
Data not available
MONTHLY ANOMALY
Data not available
ANNUAL CYCLE
Data not available

LatentHeat / FLUXCOM / 1980-2015 / global / MNAME

Benchmark
Data not available
Data not available
CLM-CRUJRA
Data not available
Data not available
CLM-GSWP3
Data not available
Data not available
CLM-Princeton
Data not available
Data not available
ISBA-CTRIP-CRUJRA
Data not available
Data not available
ISBA-CTRIP-GSWP3
Data not available
Data not available
ISBA-CTRIP-Princeton
Data not available
Data not available
JSBACH-CRUJRA
Data not available
Data not available
JSBACH-GSWP3
Data not available
Data not available
JSBACH-Princeton
Data not available
Data not available
Mean-CRUJRA
Data not available
Data not available
Mean-GSWP3
Data not available
Data not available
Mean-Princeton
Data not available
Data not available

Data Information

  Title:
FLUXCOM (RS+METEO) Global Land Energy Fluxes using GSWP3 climate data

  Version:
1

  Institutions:
Department Biogeochemical Integration, Max Planck Institute for Biogeochemistry, Germany

  Source:
Data generated by machine learning to merge energy flux measurements from FLUXNET eddy covariance towers with MODIS remote sensing and GSWP3v1 meteorological data (RS+METEO)

  History:
2019-05-07: downloaded source from doi:10.17871/FLUXCOM_EnergyFluxes_v1
2019-06-28: converted to netCDF with https://github.com/mmu2019/Datasets/blob/master/read-le-fluxcom.py

  References:
Jung, M., S. Koirala, U. Weber, K. Ichii, F. Gans, G. Camps-Valls, D. Papale, C. Schwalm, G. Tramontana, M. Reichstein (2019), The FLUXCOM ensemble of global land-atmosphere energy fluxes, Scientific Data, submitted, 1-12, https://arxiv.org/abs/1812.04951

Tramontana, G., M. Jung, C.R. Schwalm, K. Ichii, G. Camps-Valls, B. Raduly, M. Reichstein, M.A. Arain, A. Cescatti, G. Kiely, L. Merbold, P. Serrano-Ortiz, S. Sickert, S. Wolf, and D. Papale (2016), Predicting carbon dioxide and energy fluxes across global FLUXNET sites with regression algorithms, Biogeosciences, 13, 4291-4313, doi:10.5194/bg-13-4291-2016

  Comments:
time_period: 1980-01 through 2014-12
original_temporal_resolution: monthly
original_spatial_resolution: 0.5 degree
original_units: MJ/m2/day
final_temporal_resolution: monthly
final_spatial_resolution: 0.5 degree
final_units: watt/m2

  Convention:
CF-1.7

loading